
VIDEO MOSAICKING ALONG ARBITRARY

VEHICLE PATHS

Stephen D. Fleischer Howard H. Wang Stephen M. Rock

Stanford University Aerospace Robotics Laboratory

Durand Building 250

Stanford, California 94305

Michael J. Lee

Monterey Bay Aquarium Research Institute

160 Central Avenue

Paci�c Grove, California 93950

Abstract|This paper presents the experimental
veri�cation of a novel method for real-time video mo-
saicking of the ocean 
oor from a semi-autonomous
underwater vehicle. In order to enable mosaicking
along unconstrained vehicle paths, it is essential to re-
duce the propagation of image alignment errors within
the mosaic. We have developed iterative smoother-
follower techniques to reduce these errors, and we
have proven their e�ectiveness in the laboratory envi-
ronment.

We will also present our results from a concur-
rent research e�ort to demonstrate a completely au-
tonomous video mosaicking mission. By transferring
our vision technologies to OTTER (Oceanographic
Technologies Testbed for Engineering Research), we
have created a prototype system for visual survey of
the sea 
oor. In particular, we will discuss the devel-
opment of a new vision processing subsystem and its
integration into the AUV control system.

I. INTRODUCTION

Our primary motivation in exploring and developing
key vision technologies for underwater vehicle control is to
enable marine scientists to explore the ocean environment.
Speci�cally, we wish to provide a system for autonomous
mapping of the sea 
oor from an AUV. By aligning sev-
eral camera images taken at regular intervals along the
vehicle path, it is possible to form a composite image, or
mosaic, of the scene. Our current research e�orts have
included both the development of the video mosaicking
subsystem, and the integration of this sensor into an au-
tonomous video mosaicking mission.
While autonomous video mosaicking has already been

achieved on recent prototype systems [7], there are still
limitations which prevent these systems from becoming
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Figure 1: Error Propagation in Image Chain
For an image chain of length n, the error variance in
the global position of the �nal image is proportional
to n.

practical scienti�c tools. The most signi�cant unsolved
problem in real-time mosaic creation is the accumulation
of image alignment errors as the mosaic increases in size
(see Figure 1). Although the error between consecutive
images is small, the error in placing the most recent image
relative to the starting pont increases without bound as
more images are added to the mosaic.
If this chain of images were to loop back upon itself, the

image misalignment at the crossover point would result
in poor quality of the �nal mosaic. As a result, the vehi-



cle path length and shape is severely constrained, thereby
making it impossible to map large areas of the ocean 
oor.
In previous work, we have presented a method to allevi-
ate this problem by optimally reducing the image align-
ment errors around loops in the image chain [3]. Since
then, we have demonstrated experimentally the validity
of our techniques. Our experimental results, as well as an
overview of our methods and previous simulation work,
will be presented in this paper.
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Figure 2: Autonomous Video Mosaicking Mission

The proposed mission consists of three phases: (1)
navigate along the desired trajectory via an acoustic
transceiver net, (2) mosaic the sea 
oor using the
vision sensor for control, and (3) return home.

The second phase of our research is to demonstrate our
real-time video mosaicking capability within the context
of an autonomous underwater vehicle mission. Our pro-
posed task is to start at the \home" position, navigate
along a speci�ed trajectory using an acoustic positioning
system, create a mosaic of an area of the ocean 
oor, and
return \home" (see Figure 2). By executing this mission
in the test tank, we hope to demonstrate the feasibility
of video mosaicking from AUV's as a practical tool for
scienti�c exploration.

II. BACKGROUND

Several research groups have investigated the problem
of mapping the ocean 
oor from AUV's. However, these
other research e�orts di�er signi�cantly in their choice of
sensors. While several organizations have demonstrated
autonomous station-keeping and biological sample collec-
tion using various types of acoustic positioning networks

and di�erential GPS [5, 11], these sensors have not been
adapted for mosaicking tasks. Qualitative maps of the
sea 
oor have been created with side-scan sonar [6], but
according to the authors, this technology is incapable of
producing the highly accurate range information required
for quantitative surveys. Interesting results have been
achieved in the area of constrained video mosaicking, in
which a multiple-column mosaic is created by correlat-
ing the images in adjacent columns [7]. This research ef-
fort has also produced impressive single-column mosaics
of the sea 
oor using Ventana, a remotely operated vehicle
(ROV) owned by the Monterey Bay Aquarium Research
Institute (MBARI).
Many research organizations have performed exciting

AUV missions, although our concept of creating a vi-
sual multiple-image map of the sea 
oor is unique. Per-
haps the most similar missions are those performed by
the Advanced Unmanned Search System (AUSS), con-
structed and maintained by the Naval Ocean Systems
Center (NOSC) [13]. This vehicle performs broad area
search and survey in the deep ocean, using side-looking
sonar. Upon �nding an interesting item, individual im-
ages are recorded for use after the mission is completed.
Surveying and inspection tasks have been the objectives
of many recent AUV missions. Researchers have recently
proposed autonomous environmental surveying in coastal
waters o� Denmark and Portugal, using the MARIUS

AUV [12]. In an e�ort to reduce the cost of survey-
ing underwater structures, a pipeline inspection task has
been proposed within the context of an AUV mission [2].
Autonomous object retrieval with AUV's is the natural
extension of autonomous survey and inspection missions.
This mission has recently been demonstrated on OTTER,
a prototype AUV jointly constructed by the Stanford
Aerospace Robotics Laboratory (ARL) and the Monterey
Bay Aquarium Research Institute (MBARI) [14].

III. ERROR REDUCTION METHOD

To enable the task of video mosaicking along uncon-
strained vehicle paths, we have developed an approach
to reduce the image alignment errors which propagate
through the image chain (Figure 1). Our method utilizes
the theory of optimal estimation and smoother-follower
techniques to identify and remove these errors. These
techniques and their e�ectiveness will be explained in the
following sections.

A. Optimal Estimation Theory

In attempting to reduce the propagation of alignment
errors throughout the mosaic, it would seem intuitive to
utilize some version of Kalman �ltering to smooth the
errors as additional sensor measurements are recorded.
This real-time approach is applicable to dynamic systems
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Figure 3: Geometry for a Closed Loop Image Chain
By utilizing an iterative smoother-follower, the addi-
tional information gained at the crossover point can
be propagated along the entire loop to minimize the
errors along that section of the image chain.

of the form [1]:

x(k + 1) = A(k)x(k) +B(k)�(k)

z(k) = C(k)x(k) +D(k)�(k) (1)

where �(k) and �(k) are process and sensor noise vari-
ables, respectively. Based on the geometry of our system,
the state equations can be written in similar form:

x(k + 1) = x(k) +
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where z(k) is the sensor measurement. (The derivation
of these equations is beyond the scope of this paper [3].)
However, it becomes evident that the state, x(k), is com-
pletely unobservable by the sensor, z(k). As a result, it
is impossible for Kalman �ltering to reduce the errors in
image alignment within a mosaic[1, 4].
Thus, it would seem that there is no way to bound

the errors on unconstrained mosaicking. However, we
can gain additional information whenever the image chain
loops back upon itself. By correlating the nth image with
the jth image as well as the (n � 1)th image (see Fig-
ure 3), we gain another measurement of the nth image
global state. Furthermore, this new measurement is more
accurate, since the jth image occurs earlier in the image
chain and thus its global state measurement has a lower
variance.

If we isolate the measurements along the loop between
image j and image n, the equations of motion ( 2) are
valid along this path. These equations can be combined
as follows:

x(k + 1) = x(k) +
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for k = 0; : : : ; (n� j) (3)

with known initial and �nal states equal to the jth and
nth image states, respectively. To propagate the new
information throughout the loop, we can use an opti-
mal smoother-follower[1]. Although a discussion of our
smoother-follower technique is beyond the scope of this
paper [3], the results of simulations and experiments run-
ning this algorithm will be presented in the following two
sections.

B. Simulation Work

According to recent experimental data [8], the error dis-
tributions for the x, y, z, and yaw ( ) state components
are approximately uniform, with the following variances:
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where R is the range from the camera to the image area.
For our simulation, we have assumed these four degrees of
freedom are measured by the vision sensor, and the pitch
(�) and roll (�) are measured by additional sensors on
the vehicle. Therefore, only the states in the above equa-
tion ( 4) need to be processed by our smoother-follower
algorithm. Since the smoother-follower assumes Gaussian
distributions for all random variables, we have modelled
the above uniform distributions as Gaussian with identi-
cal means and variances.
To demonstrate the merit of our new approach to mo-

saicking along arbitrary vehicle paths, the following �g-
ures illustrate a typical vehicle path and its correspond-
ing mosaic. The vehicle follows a simple rectangular tra-
jectory in the XY plane while maintaining a constant
heading. Figure 4 depicts the actual image position. The
remaining two lines show the estimated position based on



the sensor data, before and after the data has been �l-
tered by the smoother-follower. Clearly, the endpoints of
the loop have the smallest error, since these points are
known to the greatest degree of accuracy, while the error
around the loop has been minimized. This can be seen di-
rectly in Figure 5, which shows the standard deviation of
computed image position before and after the smoother-
follower processing. While the original variance increases
without bound, our method clearly bounds the variance
around closed loops in the image chain.
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Figure 4: Image Position within a Rectangular Mo-
saic

When compared to the actual image position, the
�ltered data is more accurate than the position esti-
mate based purely on noisy sensor data, particularly
at the endpoints of the loop.
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Figure 5: Standard Deviation of State in X Direc-
tion

Around any closed loop in the mosaic, our smoother-
follower algorithm minimizes the variance, subject
to the constraints of the equations of motion.

C. Experimental Veri�cation

We have demonstrated our method in the lab, using the
setup shown in Figure 6. The mobile base is a planar

(3-DOF) analogue to our 6-DOF underwater vehicle. A
single downward-pointing camera is attached to the boom
extending from the base. The camera video signal is in-
put to our vision subsystem. Image digitization, storage,
and display is accomplished by two VME-based process-
ing boards created by Datacube. To perform the digital
�ltering and correlation of images at updates rates of up
to 30 Hz, we have utilized two proprietary, real-time vi-
sion processing boards created by Teleos Research [9, 10].
These boards perform all computations in hardware, and
transfer all images to and from the Datacube boards via
the VME bus.

Figure 6: Experimental Setup

This photograph depicts the mobile base and cam-
era used for our experiments. The plastic sheet sim-
ulates the ocean 
oor, in both the lab and test tank
environments.

By moving the mobile base along a square trajectory,
we have created a loop mosaic which depicts poor image
alignment at the crossover point (Figure 7). By correlat-
ing the initial and �nal images in the mosaic, a more ac-
curate estimate of the �nal image position was calculated.
Using this additional information and the o�set data for
all other images, we used our smoother-follower algorithm
to calculate an improved estimate for the global position
of each image. As seen in Figure 8, the visual quality
of the mosaic is greatly improved at the crossover point,
while the quality of the rest of the mosaic has not been
degraded.

IV. VIDEO MOSAICKING MISSION

In order to demonstrate the potential bene�ts of uti-
lizing autonomous underwater vehicles for scienti�c re-
search, we have integrated our existing vision sensing and



Figure 7: Unconstrained Mosaic (Estimated Image
Alignment Data)

This mosaic was created autonomously while the
mobile base followed a square trajectory. Note the
poor image alignment between the initial and �nal
images, in the lower left corner of the mosaic.

control technologies into a complete video mosaickingmis-
sion. The following sections describe the details of this
research.

A. Mission Speci�cation

The objective of our mission is to create a visual map of
the sea 
oor, using vision as the primary sensor for vehicle
control. To accomplish this goal, starting at the vehicle's
initial entry point into the water, three distinct phases are
required (see Figure 2).
The �rst phase involves the computation and execu-

tion of a vehicle trajectory from the initial entry point to
the desired mapping site. During this phase, the primary
sensor for navigation and control is SHARPS, an acoustic
positioning system created by Marquest, Inc.
In the second phase of operation, the mosaicking task is

executed, which commands the vehicle to follow a speci�c
coverage pattern based on position data from the vision
sensor. The individual images and mosaic are stored for
later perusal by scientists upon mission completion. Al-
ternatively, these images may be transmitted directly for
immediate use by scientists around the world, provided

Figure 8: Unconstrained Mosaic (Filtered Image
Alignment Data)

This mosaic was created using �ltered image align-
ment data from our smoother-follower approach.
Note the greatly improved alignment at crossover
(lower left corner), while the rest of the mosaic has
not degraded in quality.

there is enough bandwidth in the AUV-to-surface ship
connection to handle the data in a timely fashion.
The �nal phase of this mission is the return to the entry

point. This portion of the mission is relatively straightfor-
ward, since it is performed in the same way as the initial
transect to the mapping site. The successful execution of
each phase in this mission requires a higher level of logic to
switch between control modes during a phase transition.
This logic, implemented as a �nite state machine (FSM)
on our system, will be explained in the next section.

B. Hardware/Software Integration

Since completing our experiments in mosaic error reduc-
tion, we have upgraded our vision subsystem to a more

exible processing environment. We have developed a new
vision sensor based on the Advanced Vision Processing
(AVP) software library from Teleos Research. Our soft-
ware runs under Windows NT on a dual 133 MHz Pentium
PC.
This vision system resides o�-board our AUV, which



sends video data to the AVP via the �ber-optic tether.
The OTTER robot (Oceanographic Technology Testbed
for Engineering Research) is roughly 2 meters long, 1 me-
ter wide, and has a dry mass of 145 kg (Figure 9). It
is made up of three pressure housings surrounded by 8
ducted thrusters and covered by a �berglass shell. One
housing holds two independent VME card cages with
68040 single board computers for control and sensor pro-
cessing. The other two hold NiCad batteries which pro-
vide approximately 750 W-hrs of power. Currently, a
�ber-optic tether is used to trickle charge the batteries,
provide ethernet communications, and send video back to
the remote control station. The sensor suite includes pitch
and roll gravity sensors, a small intertial measurement
unit with 3 accelerometers and 3 rate gyros, a 
ux-gate
compass, and a pressure depth sensor. Two black/white
CCD video cameras are mounted as a stereo pair on a
custom pan/tilt unit. Main propulsion is provided by two
2 hp brushless DC variable reluctance motors. Six 1/2
hp VR motors are used for lateral and vertical motions as
well as attitude control.

Figure 9: OTTER Underwater Vehicle

In order to incorporate our vision technology into an au-
tonomous mission scenario, we modi�ed several levels of
the OTTER software control structure. To provide com-
munications and control with our AVP vision processing
subsystem, we modi�ed our low-level control system to
receive vision sensor data. From a mission perspective,
the capability for complete autonomy must be re
ected
in the highest level of our control structure. We have im-
plemented our mission as a �nite state machine (FSM) in
ControlShell, a software package for control system design
developed by Real-Time Innovations, Inc. (Figure 10).
Each state in this FSM represents a di�erent phase of our
mission. In order to transition from one state to the next,
an external event is received by the FSM, indicating com-
pletion of that particular task. For instance, to transition
from the Mosaicking to Homing states, the vision sub-
system must send an event to OTTER after the mosaic
has been created. This level of logic provides the vehicle
with enough intelligence to complete the entire mission
autonomously.
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Figure 10: Finite State Machine for Video Mosaick-
ing Mission

This diagram represents the progression of states of
OTTER during mission execution.

C. Experimental Results

We have successfully demonstrated the video mosaicking
mission with OTTER in the test tank at the Monterey
Bay Aquarium Research Institute (MBARI). Under au-
tonomous control, the vehicle followed the speci�ed tra-
jectory to hover over the desired mapping site, created
a single-column mosaic composed of �ve images, and re-
turned to its home position. One of the many mosaics cre-
ated during the mission trials is illustrated in Figure 11.
This achievement opens up new possiblities for unmanned
scienti�c exploration of the open ocean.

V. CONCLUSIONS

We have presented a new technique for the real-time
creation and on-line improvement of unconstrained video
mosaics. To achieve this, we have extended the theory
of smoother-follower estimation for our speci�c type of
dynamic system. Our simulations and experimental work
in the lab have veri�ed the validity and feasibility of this
method.
Secondly, we have demonstrated the task of video mo-

saicking in an autonomous mission scenario. By combin-
ing our vision sensing and control capabilities with our ex-
pertise in hierarchical control of AUV's to form a complete
system, we will provide scientists with a new capability for
undersea exploration, namely, the ability to remotely ex-
plore the marine environment by autonomously mapping
the ocean 
oor.



Figure 11: Mosaic Mission

This single-column mosaic was created under au-
tonomous vehicle control during the video mosaick-
ing mission.
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